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SUMMARY 
A numerical code based on the upwind TVD scheme for simulating the various reflection processes of 
a planar shock wave over a concave or convex double wedge has been developed. The numerical results were 
compared with actual experiments and excellent agreement was obtained. The excellent agreement serves 
also as a validation of the shock-capturing performance of the numerical scheme 
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INTRODUCTION 

When a planar shock wave collides with an oblique straight surface, it reflects over the surface 
either as a Mach reflection (MR) or as a regular reflection (RR) depending upon the incident 
shock wave Mach number Mi and the reflecting wedge angle 8,. 

Schematic illustrations of the wave configurations of a regular reflection and a Mach reflection 
are shown in Figures l(a) and l(b) respectively. The regular reflection wave configuration consists 
of two discontinuities, namely the incident shock wave, i, and the reflected shock wave, r, which 
meet on the reflecting wedge surface at the reflection point, R. The Mach reflection wave 
configuration consists of four discontinuities, i.e. three shock waves, namely the incident shock 
wave, i, the reflected shock wave, r, and the Mach stem, m, and one slipstream, s. These four 
discontinuities meet at a single point, the triple point, T, which is located above the reflecting 
surface and moves away from it along a straight line (chain line in Figure l(b)). 

For any incident shock wave Mach number Mi, there is a critical wedge angle, known as the 
transition wedge angle, 8:lM, at which the RR-sMR transition occurs. The regular reflection 
takes place for 8,>8:lM, and the Mach reflection for 8,<8:lMi. 

In the case of the reflection of a planar shock wave over a single wedge, such as that in Figure 1, 
the RRoMR transition does not actually take place. Depending upon the initial values of Mi and 
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Figure 1. Schematic illustrations of the wave configurations of (a) regular reflection, RR, and (b) Mach reflection, MR 

Ow, either a regular reflection or a Mach reflection is formed. Sine both Mi and Ow remain 
constant, the originally formed type of reflection does not transit to the other type. 

This is not the case when a planar shock wave collides with a wedge which has a change in 
slope of the surface from 0: to Of. In general, two different double wedges are possible depending 
upon whether 0: is greater or smaller than 8;. If AOw is the inclination of the second surface with 
respect to the first one, i.e. A&= Of-Ok, then the double wedge is concave when AtlW>O and 
convex when AOw -= 0. Schematic drawings of a concave and convex double wedge are shown in 
Figures 2(a) and 2(b) respectively. 

The reflection of a planar shock wave over a double wedge is a relatively new topic of research. 
The first experiments regarding this topic were conducted by Takayama et al.’ A comprehensive 
study was later made by Ben-Dor et al.’ In their study they established that for a given incident 
shock wave Mach number Mi, there are seven different domains of reflection processes in the 
(Oh, O;)-plane. 

The domains of the different types of reflection processes of a planar shock wave over a double 
wedge in the (t?;, Of)-plane are shown in Figure 3. The line At?, =O divides the (O;, B;)-plane into 
the domains of a concave double wedge, AOw>O (Figure 2(a)), and a convex double wedge, 
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(b)  

Figure 2. Schematic illustrations of (a) concave double wedge and (b) convex double wedge 
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FIRST WEDGE ANGLE-@\ 

Figure 3. Domains of different types of reflection processes of a planar shock wave having a Mach number Mi = 1.3 over 
a concave or convex double wedge. A summary of the reflection processes is given in Table I. Oh, first wedge angle; Ot ,  
second wedge angle; A& =Oi-O:; O&, RR-MR transition wedge angle corresponding to incident shock wave Mach 

number Mi; OElu,, RR-MR transition wedge angle corresponding to Mach stem Mach number M, 
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AO,<O (Figure 2(b)). The line Oh=O:lM,  (where O:lMi is the RRoMR transition wedge angle 
corresponding to the incident shock wave Mach number Mi) determines the initial type of 
reflection over the first wedge surface. If O;< O:lMi, then the incident shock wave reflects over the 
first wedge as a Mach reflection, MR (see Figure l(b)). However, if Ok>OI;lMi, then the reflection 
of the incident shock wave over the first wedge is a regular reflection, RR (see Figure l(a)). The 
line Of=O';lMi determines the type of reflection which is finally obtained over the second wedge. 
The final reflection is an MR if O;< OEIMl, while it is an RR when O;> O:lM, .  If the double wedge 
surface is concave, i.e. A& > 0 (see Figure 2(a)) and if the initial reflection over the first surface is 
an MR (i.e. 0; < O:IM,), then the Mach stem of this MR reflects over the second surface either as 
an MR if A& < 0: IMm or as an RR if AOw > 0: I M m .  Here OI; lM, is the RR-MR transition wedge 
angle corresponding to the Mach stem Mach number M,. It is important to note that M ,  is 
always greater than Mi. However, for a large range of incident shock wave numbers the RRoMR 
transition wedge angle depends very slightly on the incident shock wave Mach number. Therefore 
for most Mach numbers it is quite practical to assume that OzlMM,=O:lMM,. The foregoing 
discussion regarding the various types of reflection processes of a planar shock wave over 
a concave or convex double wedge is summarized in Table I. 

The above-mentioned study of Ben-Dor et aL2 was aimed at establishing the domains and 
boundaries of the various types of reflection processes of a planar shock wave over a concave or 
convex double wedge in the (O;, O$)-plane. The need to understand this phenomenon is quite 
obvious if one considers the strong wave interaction in the flow field of SCRAM jet engine inlets, 
where the wave structures have many similarities to those resulting from wave interaction with 
a double wedge. There is little doubt that the RR+MR transition in the inlets is the key to the 
start-unstart problem of the inlets. Furthermore, the vortex sheet generated by the shock wave 
interactions may cause non-linear increments of the heat flux on the blunt noses of the cowl and 
strut of the inlets. It may be also useful to better understand ground-explosion-generated blast 
wave interactions with man-made structures which have shapes similar to that of a double 
wedge.3 

The aim of the present study is to develop a numerical method which can capture the 
above-mentioned reflection processes with high resolution and to obtain a reliability test of the 
numerical method by comparing its results with actual shock tube experiments visualized using 
double-exposure holographic interferometry. The present numerical method is based on the 
upwind TVD scheme, which has an excellent shock-capturing performance. It was applied to 
simulate the shock reflection processes over various combinations of double wedges. Generally, 
however, the shock-capturing performance of TVD schemes is not guaranteed mathematically 

Table I. Summary of the seven different reflection processes which can occur over a wncave or wnvex 
double wedge 

Reflection over Reflection over Domain in 
9; 9: A4v first surface second surface Figure 1 

RR RR 1 Concave > eq >e:: - 
double < e:: > e:: >e:: MR RR + RR 5 
wedge < eq > eq < 0: MR MR + RR 7 

< 0:: < 9: < 0:: MR MR -+ MR 6 

RR RR 
double > eq <e:: - RR MR 
wedge <eq <eq - MR MR 

Convex > 9'; > 9% - 2 
4 
3 
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when the shock waves are oblique to the computational grid system. The most important aim of 
the present study is to validate the shock-capturing performance of this scheme when complicated 
shock interactions occur. The validations are obtained by comparing details of the numerical and 
experimental shock reflection processes. 

NUMERICAL METHOD 

The present numerical method is based on the TVD shock-capturing scheme originally developed 
by Harten4 and later modified and applied by Itoh’ and Yee6 to the following Euler equations 
expressed in general curvilinear co-ordinates: 

(1) Ut + F ,  + G,=O, 

U = C/J ,  (24 

where p, u, u, p and e denote density, velocities in the x- and y-directions, pressure and total energy 
per unit volume respectively. If the gas is assumed to behave as a perfect gas, its total energy per 
unit volume can be expressed as 

(3) 

where y is the ratio of specific heat capacities, i.e. C,/C,. 
In the present study the Harten-Yee upwind TVD scheme was extended to the gas dynamic 

system (Equation (1)) using Roe’s approximate Riemann s01ver.~ Roe’s approximate Riemann 
solver is an exact Riemann solver to the linearized system 

e = p / ( y  - I)+p(u2 + u2)/2, 

u, + AU, = 0, A=aFlau, (4) 

F (  U,) - F (  U,) = A( U)( UR - UL). 

where 2 is the piecewise constant matrix which satisfies the jump conditions between two 
adjacent states: 

(5 )  

This approximate Riemann solver gives the exact solution when the wave generated at the cell 
boundary is a single shock wave. 

Using the operator-splitting technique, the resulting scheme is expressed as 

u!,:2=L<LqLqL,u?sk, u ! , k =  U(nAt, jAt,  kAq), (6) 

A = At/A(. (7) 

where L, and L, are the TVD finite difference operators: 
I 

n + l -  ujs k -LEU!, k =  u!, k - A ( F j +  1 / 2 - F j -  1/21? 

The numerical flux 4 + 1 / 2  is evaluated at the cell boundary using the approximate Riemann 
solver: - 

Fj+ 1 / 2  = Fj+ 1, k + Fj, k Rj+ 1 / 2  @ j +  I 12, (8) 
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where Rj+l12 is a matrix whose columns are the right eigenvectors of the flux Jacobian 
A(Uj+112)=(aF/aU)lj+1,2 which satisfies equation (5) as the average state of u j + l , k  and 
uj,k. aj+ 112 is a vector whose element 4:+ 1/2 consists of the numerical viscosity (identical to that 
of the first-order upwind scheme) and the second-order corrector limited to be TVD by the flux 
limiter. They are constructed for the signal conservation law in each characteristic field of the 
locally linearized system (equation (4)). The basic idea and the derivation of the TVD scheme used 
are briefly described in the following for the single conservation law, i.e. 

u, +f(u) ,  = 0. (9) 
Our requirement of the scheme is convergence to the weak solution of equation (9), which allows 
discontinuities to satisfy the jump condition which is derived so that the conservative property is 
maintained. The most important feature of the weak solution that the scheme should have is the 
monotonicity-preserving property. The scheme for equation (9) can be written in the conservative 
form 

0;’ = q- 4fl+ 1/2 -fl- 1,2), (10) 

&+1/2=f(Uj-k+l,  - - - 9 u j + d = $  Cf(~j)+f(uj+1)-Qj+1/2Aj+1/2~1, (1 la) 

Q j + l / ~ = Q ( t ) i - k + l ,  , u j + k ) ,  (1 Ib) 
A j + 1 / 2 = u j + l - ~ j ,  

I E AtlAx. 

Now the scheme (equation (10)) is expressed in the parametric form 

uj”+ = c;+ 1/2uj”+ 1 + (1 - c;+ 1/2 - CT- + cy- 1/2ui”- 1, (12) 

Cif+1/2=+ J ( Q j + 1 / 2 T a j + l / z b  (134 

~ j + 1 / 2 ~ C f ( ~ j + 1 ) - f ( u j ) l l ( ~ j + ~  -vj)* U3b) 
The basic idea of the TVD scheme derived by Harten4 is to apply the following monotonicity- 
preserving property, which is the most important feature of the weak solution to the scheme: 

TV(u“+’)<TV(u”), (144 

(14b) TV(u) = C 1uj+ 1 - ~ j l .  

The following inequalities are the sufficient condition for the scheme to satisfy equation (14a) (this 
condition is known as the TVD conditon): 

C f + 1 / 2 2 0 ,  (154 

(15b) 1 -c;+ 1/2 - cy- 1/2 20. 
One of the best ways to construct the second-order scheme which satisfies the condition given by 
equations (15a) and (15b) is Harten’s modified flux approach. Harten modified the flux in 
equation (9) with an additional flux g. 

and gave the first-order upwind scheme for equation (16): 
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Pj+ 1/2=@j+ 1 -gj)l(uj+l (18b) 
Harten further constructed the additonal flux function gj so that the scheme satisfies equations 
(15a) and (15b) and is second-order scheme for equation (9). The advantage of this approach is 
that the condition given by equation (15a) is automatically satisfied. Hence only the conditon 
given by equation (15b) need be considered, together with the following requirements for which 
the scheme is second-order for equation (9): 

gj'gj+1/2+o(A2)=gj-1/2+o(A2), (19a) 

~ j+ l /~ ' a j+ l /2Aj+1 /2~ ,  ( 19b) 
(194 o j  + 1 /2 f (I a j  + 1 /2 I - La?+ 1 / 2)- 

After some calculations one can readily obtain the range for the function gj so that the scheme is 
the second-order TVD if ~gn(g~+~~~)=sgn(g~-,~~): 

min ( I  gj + 1 12 1 I g j - 1 / 2 I 1 G I gj I G max Cmin( I gj + 1 / 2 I 2 I g j - 1 /2 1 ), min(2 I gj + 1 /2 I I gj - 1 12 I 13- (20) 
For the case ~ g n ( g ~ + , ~ ~ ) # s g n ( g ~ - ~ ~ ~ )  one cannot obtain a second-order TVD using this ap- 
proach; therefore one should set gj=O and the scheme degenerates to a first-order scheme. Hence 
the constructed gj, which is aimed at limiting the numerical flux to preserve the monotonicity 
property, is temed the flux limiter. Yee modified the abovedescribed Harten TVD scheme by 
eliminating aj+ 1/2 from gj+ 112 as follows:6 

f;+ 1 / 2 = +  Cf;+f;+ 1 +a j+  l/z(gj+gj+l)-Iaj+ I / Z  +Bj+ 1/2IAj+1/~uI, (21) 

B j + 1 / 2 = ~ j + 1 / ~ ( g j + l - g j ) / ( u j + l - - j ) ,  (224 

gj+1/2=Aj+1/2~* (224 
The foregoing scheme, known as the Harten-Yee scheme, has the same form as the second-order 
Godunove-type TVD scheme when the piecewise constant characteristic speed is assumed to be 
aj+ 1/2. (This Harten-Yee scheme was adopted throughout this study.) Thus &:+ 1/2 of the Ith 
characteristic field in equation (8) is expressed as 

&i+ I / z = ~ ( Q ~ +  1/2)(gf+gi+ 1)-Q(afi+ 112 +sf+ 1/2)Aj+ 1/24'. (23) 

Here Aj+1/2al is the characteristic variable of the Ith field, which is the Ith component of the 
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where 

s = sgn(A + ,2 a'). 

The functions ~ ( z )  and are expressed as 

4.4~ CQ(z)-Az2l/2, 

It should be noted here that the weak solution is not unique, hence there is a need for additional 
conditons to select the physically relevant solution. The additional requirement is that if 
at =- a > a,, the discontinuity remains as a shock wave (entropy conditon); if al =a = a,, it remains 
as a contact discontinuity; and if al -= a < a,, the discontinuity must spread out as an expansion 
wave. Although the scheme shown by equation (21) in which Q(z)=lzl does not guarantee the 
above-mentioned entropy condition, the numerical dissipation which is proportional to 1 z 1 
breaks up the discontinuity to an expansion wave if it is not a shock wave. However, if Izl-0 (i.e. 
in the vicinity of a sonic point), an unphysical discontinuity, namely an expansion shock, can exist 
owing to the zero dissipation. Therefore Q(z) should be constructed in such a way that the zero 
dissipation is avoided, i.e. 

6 = E (  JUI +c), 

(29) 
small positive number (e.g. 0.1) for a non-linear field, 
0 for a linear field. 

Note that an entropy correction for a linear field is not performed. 
As the boundary condition on the wedge surfaces, the reflection condition was assumed by 

using the image point method. The grid used was not solution-adaptive. The computational grid 
system comprised 300 x 120 orthogonal and boundary-fitted grids. The computations were 
performed with the NEC SX-1 supercomputer of Tohoku University, Sendai, Japan. 

In order to check the performance of the presently developed upwind TVD scheme, it was used 
to simulate the well-known 1D shock tube problem. Figure 4 illustrates the exact solutions (solid 
lines) and the numerical predictions (dots) for the density, pressure and velocity distributions. The 
initial conditions for this simulation were 

where 

P L  P R  0,125 

U F [  p;:] = [t]. uR= [ = [ o;5]. 
A comparison between the exact sohtions and the numerical predictions of the present 

simulation clearly indicates that the presently developed numerical code excellently reproduces 
the 1D shock tube problem. 
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Figure 4. Comparison between exact solutions (solid lines) and numerical predictions (dots) of the classical 1D shock 
tube problem 

EXPERIMENTS 

The experiments were conducted using a 60mmx150mm shock tube of the Shock Wave 
Research Center of the Institute of Fluid Science of Tohoku University. The driver section was 
1.5 m long and had a diameter of 230 mm. The driver gas was air at room temperature. The length 
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of the driven section (the channel) was 8 m. The driven section ended at a damptank. The test 
section windows were made of BK7. Their dimensions were 150 mm x 230 mm. The test gas was 
dry air at room temperature. The initial pressure of the test section was varied in the range 
30-80 kPa depending upon the desired value of the incident shock wave Mach number. The 
incident shock wave velocity was recorded using Kistler pressure transducers. These pressure 
transducers were flash-mounted in the upper wall of the shock tube just ahead of the test section. 
The attenuation of the incident shock wave was checked and found to be negligible. 

Double-exposure holographic interferometry was used to record the reflection process. The 
light source was a Q-switched giant-pulse ruby laser (A = 694.3 nm) having a pulse width of 20 ns 
and an energy of about 1 J per pulse. 

RESULTS AND DISCUSSION 

Table I1 summarizes the initial conditions of the various experiments which will be discussed in 
the following. The experiments cover six of the seven domains of different reflection processes 
which are illustrated in Figure 3, and summarized in Table I. 

The holographic interferograms of experiments 1-6 are shown in Figures 5(a)-lo(a) respect- 
ively, Each holographic interferogram is accompanied by its corresponding numerical simulation 
(Figures 5(bk10(b)) generated by the presently developed numerical code. 

The actual isopycnics on Figures 5(aklqa) are labelled with letters starting with the letter ‘a’. 
The density value which corresponds to each isopycnic appears in the table inset on each 
holographic interferogram. The density difference corresponding to one fringe shift is determined 
by the experimental set-up and is given as 

Ap = A/KL, 

where I is the wave length of the light source (694.3 nm), K is the Gladstone-Dale constant of the 
gas under investigation (approximately 0.225 cm3 g-’ for air) and L is the width of the test 
section (60 mm). Therefore the density difference between two neighbouring fringes is 
A p =  5-14 x lo-’ g In order to compare the actual interferograms with the computational 
isopycnics, this value, normalized by the density ahead of the incident shock wave, was used to 
draw the computational isopycnics. 

Figures 5(a) and 5(b) show the holographic interferogram and the computational isopycnics ol 
a reflection process typical to domain 6 of Figure 3. A comparison shows that the triple-shock 
structure, the interaction of the reflected shock waves and the slip line which is initiated from the 
first triple point are well simulated by the numerical method. The secondary slip line which is 
generated when the two reflected shock waves intersect at the second triple point is no! 

Table 11. Details of experiments 

Experiment Domain in 0; 0; Mi PO 
no. Figure 3 (deg) (deg) &Pa) 

Concave double wedge 1 6 15 35 2.16 50.7 
2 7 20 55 2.16 30.4 
3 1 55 75 1.95 507 

Convex double wedge 4 4 60 30 2-16 304 
5 3 35 15 1.49 667 
6 2 65 50 1.47 80.0 



Figure 5. (a) Holographic interferogram of the reflection process in domain 6 of Figure 3; 0:. = 15", 0; = 35", M i  = 2.16. 
(b) Numerical simulation of interferogram shown in (a) 



Figure 6. (a) Holographic interferogram of the reflection process in domain 7 of Figure 3; 0: = 20", 0: = 55", Mi = 2.16. 
(b) Numerical simulation of interferogram shown in (a) 
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reproduced by the simulation. However, its interaction with the first slip line is well reproduced. 
The interaction of the two slip lines results in a vortex which is also reproduced fairly well by the 
numerical simulation. This phenomenon, which is clearly observed in the interferogram, is not so 
clear in the numerical simulation, where the slip lines are diffusive and their interactions are not 
clearly resolved. Probably a finer mesh should be used and, moreover, the resolution should be 
improved in order to reproduce the detailed structure of the interaction of the slip lines. In 
addition, the general shape of the isopycnics is excellently reproduced by the numerical 
simulation. 

The reflection process typical to domain 7 of Figure 3 is shown in Figures qa )  and qb). In this 
case the triple point which appears in the first reflection propagates parallel to the second wedge 
surface. The wave interactions seem to be stronger than in the previous case. The first slip line 
seems to be parallel to the second surface. The agreement between the simulation and the 
experiment is fairly good except in the region where the slip lines interact. The secondary slip line 
is again not reproduced by the numerical simulation; however, its interaction with the first slip 
line is clearly reproduced. 

Figures 7(a) and 7(b) show the reflection process typical to domain 1 of Figure 3. Although the 
strong wave interactions are observed only in the small region around the leading edge of the 
second reflecting wedge, they are well simulated by the present numerical solution. In addition, it 

(a) 

Figure 7. (a) Holographic interferogram of the reflection process in domain 1 of Figure 3; 0: = 55", 0;= 75", MI = 1.95. 
(b) Numerical simulation of interferogram shown in (a) 
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Figure 7. (Continued) 

is clearly seen that the general shape of the isopycnics is excellently reproduced by the numerical 
simulation. 

Figures 8(a, b)-lO(a, b) show the reflection processes over convex double wedges correspond- 
ing to domains 4,3 and 2 of Figure 3 respectively. In these cases expansion waves are generated 
when the incident shock wave or Mach stems, which are generated over the first surface, diffract 
around the leading edge of the second wedge surface. In addition, the interactions of the reflected 
shock waves with the expansion waves are well captured by the numerical simulation. The 
curvature of the reflected shock waves and the isopycnics around these interaction regions in the 
simulations agree very well with those obtained in the experiments. Finally, it is seen that the 
general shapes of the isopycnics and the various discontinuities (shock waves and slip lines) are 
excellently reproduced by the numerical simulations. 

CONCLUSIONS 

A numerical method based on the upwind TVD scheme was developed in order to simulate the 
various reflection processes of planar shock waves over concave and convex double wedges. The 
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Figure 8. Holographic interferogram of the reflection process in domain 4 of Figure 3; 0; =a", 0: = 30", Mi = 2.16. 
(b) Numerical simulation of interferogram shown in (a) 
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Figure 9. (a) Holographic interferogram of the reflection process in domain 3 of Figure 3; 0; = 35", 0; = 15", Mi = 1.49. 
(b) Numerical simulation of interferogram shown in (a) 



Figure 10. (a) Holographic interferogram of the reflection process in domain 2 of Figure 3; 0; =65", 0: =So", Mi = 1.47. 
(b) Numerical simulation of interferogram shown in (a) 
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numerical results were compared with results from actual shock tube experiments which were 
obtained using double-exposure holographic interferometry. The comparison shows that the 
present numerical method can simulate these complicated wave interactions fairly well. It shows 
also that the resolution of the numerical code needs to be improved in order to better resolve the 
detailed structure of the second slip lines and their interaction with the first slip lines. However, 
for engineering purposes the resolution of the present scheme could be considered satisfactory. 
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